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Abstract— This paper presents an underwater robotic sensor
system for localizing acoustic transmitters when the robot’s
hydrophones can not be time-synchronized. The development
of the system is motivated by applications where tracking of
marine animals that are tagged with an underwater acoustic
transmitter is required. The system uses two novel real-time
calibration algorithms that improve the accuracy of time of
flight (TOF) and time difference of arrival (TDOA) measure-
ments. The first algorithm corrects non-linear clock skews in
TOF measurements based on temperature variation. The second
algorithm compensates the localized relative clock skew between
clocks using a mixed integer linear program. To validate the
system’s performance, an Autonomous Underwater Vehicle
(AUV) was deployed to track a moving tag where GPS data was
used as ground truth. Compared to traditional TOF and TDOA
filtering methods, the results show that the proposed system can
achieve reduction of mean localization errors by 59%, and a
reduction of the standard deviation of measurements by 44%.

I. INTRODUCTION

Tracking movement behaviors of marine animals is a
necessary component for understanding underwater ecosys-
tems. Typical methods for tracking marine animals includes
physically tagging them with acoustic transmitters, and us-
ing hydrophone-receiver systems to receive the transmit-
ted acoustic signals. Recent research has shown that such
hydrophone receiver systems can be implemented on au-
tonomous underwater vehicles (AUVs) or even multi-AUV
systems, tasked with actively tracking fish or sharks [1]–[3].

Within AUV tracking systems, and particularly multi-AUV
systems, the clocks on the different hydrophone-receivers
must be synchronized for extracting the accurate time of
flight (TOF) and time difference of arrival (TDOA) values
necessary for obtaining range-to-tag and bearing-to-tag mea-
surements. Unfortunately, clocks of different hydrophone-
receivers are subject to temperature-induced clock drifts and
a lack of clock synchronization [4].

This paper offers a solution to the drift problem by present-
ing an AUV localization system that is capable of performing
real-time calibration. It corrects non-linear clock drift in real-
time to produce accurate TOF data. In addition, the system
leverages known physical parameters of the hydrophone-
receiver system to compensate relative clock skew between
hydrophones, and calculate TDOA measurements. The TOF
and TDOA data are used to produce range and bearing
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Fig. 1: (a) shows the OceanServer Iver2 equipped with
two hydrophone-receivers; (b) shows a Vemco 69 kHz V9
acoustic tag.

measurements, which are then fed into a particle filter
for target state estimation. To validate performance, this
paper examines an unsynchronized hydrophone-receiver pair
in an AUV tracking system. This system consists of an
OceanServer Iver2 AUV, two VR2C 69 kHz hydrophones
that are attached to both ends of the AUV, and a 69 kHz
Vemco V9 periodic acoustic transmitter tag (see Fig. 1).
Each hydrophone receiver is bundled with microprocessors
that process acoustic data individually. The hydrophones
are configured to send timestamps of received signals with
microsecond resolution, as well as measured temperatures to
the Iver2 AUV computer via serial communication.

The contributions of this work include:
1) An algorithm that dynamically compensates for non-

linear clock drift in TOF calculations based on tem-
perature variations.

2) An algorithm that uses a mixed integer linear pro-
gramming (MILP) formulation to perform regression
to estimate the skew between clocks to obtain TDOA
measurements.

3) A full system verification of localizing tagged objects
using the purposed system.

Two experimental data sets are used to validate the system.
In these experiments, localization of a tagged moving target
was conducted at Big Fisherman’s Cove, Santa Catalina
Island, during August of 2017.

The paper is organized in the following manner: Section
II describes relevant past work. Section III, IV, V and
VI describe details of the proposed system, including the
algorithm developed for correcting non-linear clock drift, the
algorithm and MILP formulation developed for estimating
relative clock drift between hydrophones dynamically, and
the particle filter used for estimating the position of the



target. Section VII presents the experiments performed and
results. Conclusions and future work are presented in Section
VIII.

II. BACKGROUND

Underwater localization of acoustic tags is a well re-
searched field [5]–[8]. Localization is achieved through al-
gorithms based on TOF, TDOA, signal amplitude or any
combination of the three. Using Radio Signal Strength Indi-
cator (RSSI) detection, Hook et al. investigated strategies to
localize fish [9]. Shatara and Tan presented an efficient TOF-
based algorithm to localize small robotic fish within a sensor
array [10]. Lin et al. proposed an algorithm that localizes
acoustic tags using TOF measurements obtained from two
synchronized hydrophones on an AUV [1]. Espinoza et al.
described and tested a new acoustic telemetry system that
can accurately localize aquatic animals using a 3-receiver
TDOA algorithm [11].

These localization algorithms rely on accurate TOF and
TDOA measurements. To obtain such measurements, one
can build a hydrophone array with a data acquisition module
(DAQ), and use a high-accuracy clock such as a SA.45s chip
scale atomic clock (CSAC) to synchronize all hydrophones
[8]. The obtained acoustic data can then be processed with
algorithms such as matched filtering and phased-array beam-
forming. However, the costs and efforts involved in building
such systems might be prohibitive.

Instead of implementing such custom systems, one may
choose to use off-the-shelf hydrophone receivers produced
by companies like Vemco. Such hydrophones can usually be
configured to output timestamps when signals from acoustic
tags are received. To calculate TOF and TDOA measure-
ments, one needs to synchronize the hydrophones. However,
high-resolution synchronization between these hydrophones
is difficult, if not impossible: Vemco hydrophone clocks
can be synchronized with PC clocks with an accuracy of
only 1 second [12]. In addition, the crystal oscillators in
the hydrophones are subject to drifts caused by changes
in temperature, and the hydrophone clocks will become
unsynchronized during operation [13]. One method to correct
clocks drifts is to periodically synchronize hydrophones with
GPS time [14]. However, GPS signals are unavailable while
vehicles are underwater.

The impact of hydrophone clock drift is insignificant
in large-scale array systems in which unsynchronized hy-
drophones are separated by hundreds or thousands of meters.
In [4], Warnar and Hannay utilized and tested a TDOA
based algorithm to localize bowhead whales. In their system,
clock drift was insignificant since the separation between
hydrophones was large. However, the separation between
hydrophones on common AUV systems is on the order of
meters, or even centimeters [1], [8]. The influence of clock
drift becomes more prominent for such small separations.

Previous research has been conducted to specifically com-
pensate for clock drift to achieve better localization accuracy.
In [15], a linear model is used to estimate clock drifts, but
is only valid under a constant temperature environment. In

[16], quadratic regression is used to compensate the drift
of a quartz clock and reduces the localization error from
about one thousand meters to three hundred meters. Unlike
these previous works, proposed here are two novel algorithms
that compensate for non-linear clock drifts between multiple
hydrophones that are not time-synchronized.

III. TAG POSITION STATE ESTIMATION SYSTEM
OVERVIEW

The acoustic tag state estimation system presented in this
paper has three parts. First, the system estimates the TOF
from the AUV to the acoustic tag with a temperature-based
dynamic clock skew estimation algorithm. The TOF is used
to calculate the distance d between the AUV and the acoustic
tag, (see d in Fig. 2). Second, the system estimates TDOA
between the two hydrophones with an algorithm that uses
a MILP formulation. The TDOA is used to calculate the
bearing α between the AUV and the acoustic tag, (see α
in Fig. 2). Third, a particle filter fuses the distance and
bearing estimates to produce estimates of the tag’s positions.
Together with position and heading (see γ in Fig. 2) of the
AUV, the acoustic tag’s global position can be determined.
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Fig. 2: Illustration of the localization scheme used in this
paper. A hyperbola is constructed with TDOA measurement
from hydrophone h1 and h2. From TOF measurement, a
circle of range d can be constructed, and its intersection
p1 and p2 with the hyperbola represents the two potential
locations of the target. Angle α and γ represent the AUV’s
relative bearing to the target and heading respectively.

IV. TEMPERATURE-BASED DYNAMIC CLOCK SKEW
ESTIMATION FOR TIME-OF-FLIGHT DISTANCE

ESTIMATION

When AUVs are deployed into water, rapid temperature
changes can occur and alter the clock speeds on different hy-
drophones, inducing differences in time measurements [13].
The clock skew is defined as the instantaneous difference
between a clock and the true time. The rate at which the
clocks drift with respect to the real time is defined as the
drift rate. The drift rates might be constant, which will lead
to linear clock skew with respect to time, or time-varying,
which will lead to non-linear clock skew. The progression
of clock timing can be represented by plots such as Fig.



3, where the x-axis represents the true time and y-axis
represents the time measured by clocks.

Consider a hydrophone with a non-linear clock skew
function and a stationary acoustic tag with a fixed true period.
The period of the tag as measured by the hydrophone will
be non-constant.
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Time

True Time
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Fig. 3: tc(t) represents the hydrophone clock with a non-
linear clock skew function. tc25(t) represents the linear
clock skew function of the imaginary hydrophone clock at
25◦C. ttrue,tx,n and ttrue,rx,n represent the true transmit and
receive times of the nth acoustic signal, tc25,tx,n and tc25,rx,n
represent the measured transmit and receive times on the
virtual 25◦C clock for this signal, and tc,tx,n and tc,rx,n
represent the measured transmit and receive times on the
actual hydrophone clock for this signal.

Traditional methods to calculate TOF assuming constant
tag periods [2] will accumulate significant error over time.
What’s more, since it is impossible to measure true times,
it is impossible to calibrate the hydrophone beforehand to
obtain a function that relates the clock drift rate with respect
to a perfect clock. However, a calibration with respect to
a virtual clock that represents the hydrophone clock at a
constant temperature can be performed. Assuming clock
skew depends only on temperature, this virtual clock will
have a linear clock skew function. TOF calculations can then
be carried out using the methods described in [2].

Such calibration requires knowing the relative drift rate
between the non-linear clock and the virtual clock. This
allows the function of relative drift rate with respect to tem-
perature to be measured before experiments. In the system
implemented in this paper, the temperature of the virtual
clock is set to be at 25◦C.

A. Linearizing A Non-linear Hydrophone Clock

In this section, time instances are denoted with a three-
subscript scheme: tk,x,n. The first subscript k indicates
whether the time is measured with an actual hydrophone
clock (c), the virtual 25◦C hydrophone clock (c25), or the
perfect clock (true). The second subscript x indicates if
the time is associated with acoustic signal transmission (tx)
or reception (rx). The third subscript n denotes the signal
number, e.g. it was the nth signal transmitted. Fig. 3 shows

the actual hydrophone clock function tc(t) together with the
virtual linear clock function tc25(t).
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Fig. 4: tc(t) represents tc(t) at θ◦C. tc25(t) represents tc(t)
at 25◦C.

It follows that

tc25,rx,n =

∫ ttrue,rx,n

0

dtc25
dt

dt (1)

Performing substitution of variable with dtc = dtdtcdt , Eq. (1)
becomes

tc25,rx,n =

∫ tc,rx,n

0

dtc25
dtc

dtc (2)

Eq. (2) can then be approximated using a discretization

tc25,rx,n =

N∑
i=0

dtc25
dtc

∣∣∣∣
t=i∆tc

∆tc (3)

where N is a positive integer representing the number of
discretization intervals, and ∆tc = tc,rx,n/N . The greater
N is, the more accurate Eq. 3 becomes. Since drift rates are
dependent on temperature only, it follows that Eq. 3 can be
rewritten as

tc25,rx,n =

N∑
i=0

g(θ(i∆tc))∆tc (4)

where g(θ(t)) =
dtc25
dtc

(θ(t)) is the relative drift rate function
with respect to temperature θ(t), a function of time.

B. Determining Relative Drift Rates

To determine g(θ), notice that

g(θ) =
dtc25
dtc

(θ) =

dtc25
dt

dtc
dt (θ)

(5)

As shown in Fig. 4,

dtc25
dt

=
∆t25

∆t
(6)

dtc
dt

(θ) =
∆tθ
∆t

(7)



Thus,

dtc25
dt

dtc
dt (θ)

=
∆t25

∆tθ
(8)

Using a fixed period acoustic signal transmitter, together
with a temperature controlled water bath, g(θ) can be approx-
imated experimentally with Eq. (8). ∆tθ will be the period
of the acoustic tag measured at temperature θ, and ∆t25 will
be the period of the acoustic tag measured at 25◦C.

C. TOF Calculation

With g(θ) obtained, Eq. 3 can be used to calculate TOF
for each signal received. As described in [2],

TOFc25 = tc25,rx,n − tc25,tx,n
= tc25,rx,n − (tc25,tx,0 + kTc25) (9)

where k = n − 1 is a non-negative integer, and TOFc25
and Tc25 are the TOF and period of the acoustic signal
measured by the virtual hydrophone at 25◦C respectively.
For TOFc25 < Tc25 ,

k = round
[
tc25,rx,n − tc25,tx,0

Tc25

]
(10)

And d = TOFc25 · v25. Since Vemco hydrophones typically
are calibrated to ±20 parts per million [12] at 25◦C, for
practical purposes it is safe to assume v25 ≈ v, where v is
the true sound velocity in water.

D. Summary and Algorithm Overview

Pseudocode for the algorithm is shown in Algorithm 1.
~θt represents an array of past temperature data measured.
Among the input parameters, tc,rx,n, ~θt are real-time mea-
surements obtained from the hydrophone, and tc,tx,0, Tc25
needed to be obtained through calibration with the target
tag. Notice that tc,tx,0 equals tc25,tx,0.

Algorithm 1 Temp-TOF: Distance Estimation with Non-
linear Clock Skew Correction

1: function TEMP-TOF(tc,tx,0, Tc25 , g(θ), v, tc,rx,n, ~θt, N )
2: θ(t) ← Non-linear fit with Levenberg-Marquardt

method in the form y = a+ b exp (cx) on ~θt [17].
3: ∆tc ← tc,rx,n/N
4: tc25,rx,n ← 0
5: for i← 0, N do
6: tc25,rx,n ← tc25,rx,n + g(θ(i∆th))∆tc
7: end for
8: k ← round

[
tc,rx,n−tc,tx,0

Tc25

]
9: TOF← tc25,rx,n − (tc,tx,0 + kTc25)

10: d← TOF · v
11: return d
12: end function

V. MIXED-INTEGER LINEAR PROGRAMMING
ALGORITHM FOR TDOA ESTIMATION

TDOA measurements can be used to obtain angle mea-
surements, and it requires time measurement data from both
hydrophones. Clock drifts between hydrophones can there-
fore adversely affect the accuracy of TDOA measurements.
While the algorithm presented in Section IV is suitable for
distance estimation, the accuracy provided by the algorithm
is not sufficient for TDOA estimation. As Section VII will
show, the distance measurements have errors on the order
of 1 m, which may not be low enough to to provide
consistent TDOA measurements that are discernible by a pair
of hydrophones mounted on an AUV.

To account for the relative clock skews between two
boards, a MILP formulation is proposed. It estimates the
most likely relative clock skew between the two hydrophones
based on physical constraints of the hydrophone system.

A. Obtaining Angles from TDOA Data

TDOA measurements can be used to generate directional
measurements by using the time difference between the two
hydrophones. In particular, for a given TDOA, all possible
signal locations are represented with a hyperbola, (see Fig.
2).

Assuming the acoustic signal’s position can be expressed
as (x, y) in a 2D Cartesian coordinate frame. The hyperbola
representing all possible (x, y) can be expressed as

x2

∆d2/4
− y2

D2/4−∆d2/4
= 1 (11)

where D is the separation between two hydrophones and
∆d = TDOAv, where v is the sound speed [18]. The solution
to Eq. (11) has asymptotes in the form of

y = ±

√
D2/4−∆d2/4

∆d2/4
x (12)

Angle α shown in Fig. 2 can then be approximated by

α =

arctan
√

D2/4−∆d2/4
∆d2/4 if ∆d ≥ 0

π − arctan
√

D2/4−∆d2/4
∆d2/4 otherwise

(13)

B. MaxBound: Estimating Relative Clock Skews with a
MILP Formulation

The relative clock skew between two hydrophones can
be estimated using linear regression. However, linear least-
square regression focuses only on minimizing the sum
of squares of residuals; it does not consider the physical
constraints of the system. Since the two hydrophones are
separated by a fixed distance, the maximum possible TDOA
value is the distance divided by sound speed. Using least-
square regression, the corrected TDOA data might be greater
than the maximum possible TDOA value.

A MILP formulation was developed to take physical
constraints into account. In the formulation, V is the set of all
TDOA values collected in a time interval. Parameters include



xi i ∈ V time of measurement i
yi i ∈ V uncorrected TDOA of measurement i
B maximum possible TDOA
M an arbitrarily large number

Variables include

d+
i i ∈ V Positive distance yi from the fitted line
d−i i ∈ V Negative distance yi from the fitted line
b0 Intercept of the fitted line
b1 Slope of the fitted line
Oi i ∈ V Binary, 1 if yi − (b0 + b1xi) > B

The objective function (Eq. (14)) aims to minimize the
number of points violating the maximum possible TDOA.

min
∑
i∈V

Oi (14)

The constraints are listed below.

b0 + b1xi + d+
i − d

−
i = yi ∀i ∈ V (15)

d+
i − d

−
i −B ≤MOi ∀i ∈ V (16)

d−i − d
+
i −B ≤MOi ∀i ∈ V (17)
b0, b1 unrestricted

d+
i , d

−
i ≥ 0

Oi ∈ {0, 1}

Constraint (15) ensures b0 and b1 represent the intercept
and slope. It also forces d+

i to take on non-zero values when
the residual is positive, and d+

i to take on non-zero values
when the residual is negative. Constraint (16) and (17) forces
Oi to be 1 if and only if d+

i or d−i is greater than or equal
to B. b0 and b1 can then be used to correct for relative
clock skew between two hydrophones and obtain TDOA
data. In the following section, this MILP formulation will
be abbreviated as MaxBound.

C. Summary and Overview of the Algorithm

As discussed in Section IV, there exists significant non-
linear clock skews. Assuming in a short period of time the
relative clock skews are linear, Algorithm 2 uses a sliding-
window approach to estimate the localized clock skews for
each TDOA measurement, illustrated in Fig. 5. In addition,
it keeps the old estimates of b0 and b1 until the objective
function value (Eq. 14) exceeds a threshold.

In Algorithm 2, ynew and tnew are the value and time
of the newest TDOA measurement. b0,prev and b1,prev are
the most recent estimated fit parameters. ~ypast and ~tpast are
the values and times of past TDOA measurements. D is the
separation between hydrophones. v is the sound speed. W
is the size of the sliding window. K is the maximum value
of the objective function allowed until b0 and b1 need to be
updated. The MILP solver used is Gurobi 7.5.2 [19]. For
online processing, at least W data needs to be collected be-
fore starting the algorithm. For offline processing, the sliding
window can be adjusted to center at each measurement.

Uncorrected

0

f(t)

f(t)−B

f(t) +B

b0 + b1t

Time, t

TDOA (s)

W

Fig. 5: f(t) represents the clock skew difference between
the two hydrophone clocks. The two dotted curves represent
the maximum and minimum TDOA measurements given
the skew. b0 + b1t represents the local clock skew function
obtained by solving the MILP formulation over the window
of size W .

Algorithm 2 MaxBound-TDOA: TDOA Estimation with
MaxBound MILP Formulation

1: function MAXBOUND-TDOA(ynew, tnew, b0,prev ,
b1,prev, ~ypast, ~tpast, D, v, W , K)

2: B ← S/v
3: ~t, ~y ← W most recent TDOA measurements com-

bining tnew, ynew, ~tpast, ~ypast
4: Calculate the objective function value ObjV al with
~t, ~y and b0,prev, b1,prev.

5: if ObjV al > K then
6: b0, b1 ← Solve MaxBound MILP Formulation

with ~t, ~y and B
7: else
8: b0, b1 ← b0,prev, b1,prev
9: end if

10: ycorrected ← ynew − (b0 + b1tnew)
11: ∆d← ycorrected · v
12: α← Calculated from Eq. 13 with D and ∆d
13: return α
14: end function

VI. PARTICLE FILTER

The location of the tag is estimated with a particle filter
that fuses the TDOA and TOF measurements. The particle
filter represents the belief state of the tag at time t with a
set of particles Ptag,t of size Np. Each particle p ∈ Ptag,t is
represented by set {Xp

t w
p
t }. X

p
t represents the tag’s position

on a 2D Cartesian plane at time t and wpt represents the
weight of the particle at time t. Upon initialization, Ptag,0
is populated with particles distributed uniformly across the
map with equal weight. At each iteration, each particle is
propagated randomly with Gaussian noise that has a standard
deviation of σ and mean of 0. Given a valid measurement z
which contains bearing zα and distance zd measurements
from the TOF and TDOA, each particle p’s weight is
updated by first calculating the expected distance dpexp and



(a) Trial 1 Tracks (b) Trial 2 Tracks

Fig. 6: Overhead view of the tracks in experiments conducted. AUV indicates the location of the AUV; Tag (GPS) indicates
the location of the tag logged by the GPS receiver; Tag (PF) indicates the location of the tag estimated by the particle filter.
Solid filled circles indicate the start of tracks, and + signs indicate the end of tracks.

the expected angle αpexp. Given the current state of the AUV
XAUV
t at a given time t, the expected angle can be calculated

as:

αpexp = arctan (yXp
t
− yXAUV

t
, xXp

t
− xXAUV

t
) + γ (18)

Similarly, the expected distance d can be obtained by cal-
culating the Euclidean distance between XAUV

t and Xp
t .

Each particle’s weight can then be updated with a Gaussian
distribution function W (zs, s

p
exp, σs) given by

W (zs, s
p
exp, σs) =

1√
2πσs

exp
−(zs − spexp)2

2σ2
s

(19)

where zs is a measurement, spexp is the expected measure-
ment and σs is the measurement standard deviation. After
each prediction step, the particles are resampled systemati-
cally, and the location of the tag is calculated as the mean
of Ptag,t. The entire process is outlined in Alg. 3.

Algorithm 3 Tag Position Estimator

1: for p ∈ Ptag,t do
2: // Propagate
3: Xp

t ← Xp
t−1 +NormRandom(0, σ)

4: // Prediction
5: if There are valid measurements z then
6: αpexp ← Expected.Angle(XAUV

t , Xp
t )

7: dpexp ← Euclidean.Dist(XAUV
t , Xp

t )
8: wpt ←W (zα, α

p
exp, σα) ∗W (zd, d

p
exp, σd)

9: else
10: wpt = wpt−1

11: end if
12: end for
13:
14: // Correction
15: for p ∈ Ptag,t do
16: draw p ∈ Ptag,t with probability wpt
17: add p to Ptag,t+1

18: end for

TABLE I: Parameters used in Algorithm 1, 2 and 3

Temp-TOF MaxBound-TDOA Particle Filter

N D (m) W K σα (rad) σd (m) σ (m) Np
1000 2.083 60 5 0.4 5 5 5000

VII. EXPERIMENTS

Experiments were conducted at Big Fishermans Cove,
Catalina Island, California to characterize the system’s per-
formance. For the experiments, an acoustic tag was hung
from a boat equipped with a GPS receiver. The boat moved
around in the cove while logging GPS positional data
and time stamps. The AUV was simultaneously logging
its GPS positional data and received acoustic tag signals.
The acquired data was then downloaded and ran through
an offline version of the localization system. The system’s
performance is then compared to those of two baseline meth-
ods: TOF without non-linear drift correction (abbreviated
as Simple-TOF), and TDOA obtained with linear regression
(abbreviated as LS-TDOA). Since the particle filter is non-
deterministic, 100 trials were performed and errors were
averaged. σα, σd and σ are determined experimentally. Table
I summarizes the parameters used for Algorithm 1, 2 and 3.

A. Hardware System Overview

The acoustic tag used in the experiments was a Vemco
69 kHz V7 acoustic transmitter with a period of 7.767 s ±
0.001 s. The two VR2C 69 kHz hydrophones are separated
by 2.083 m ± 0.003 m. The GPS receiver used was a Garmin
eTrex 20 model, with a positional accuracy of 4 m.

B. Trial 1

Trial 1 started on August 11th, 2017 at 00:44 UTC time,
and lasted about 10 minutes. Fig. 7a and 7b show the errors
in distance measurements and angle measurements. Fig. 7c
shows the particle filter localization errors. All the plots
show that methods proposed in previous sections perform
consistently better than the baseline methods.
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Fig. 7: Trial 1 Results
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Fig. 8: Trial 2 Results

C. Trial 2

Trial 2 started on August 11th, 2017 at 02:00 UTC time,
and lasted about 20 minutes. Fig. 8a and 8b show the errors
in distance measurements and angle measurements. Fig. 8c
shows the particle filter localization errors. Similar to the
plots for Trial 1, methods proposed in previous sections
perform better than the baseline methods.

D. Results

Table II, III and IV show a summary of some important
statistics of the experiments’ results. For the mean angle
measurement errors, MaxBound-TDOA achieves an average
reduction of 43% comparing to using LS-TDOA method for
Trial 1 and 2, and a reduction of 18% comparing to the 30◦

(0.52 rad) mean angle measurement error demonstrated in
[2] using synchronized hydrophones.

For the mean distance measurement errors, Temp-TOF
achieves a reduction of 57% for Trial 1 and 2. For the
Simple-TOF method, 4% of distance measurements in Trial
1 and 8% in Trial 2 are removed because their values are
on the order of 104 meters, which far exceeds the possible
range of the hydrophones. None of the TOF measurements
calculated by Temp-TOF is removed. On average, the pro-
posed system achieved a localization error of 14 m with
a standard deviation of 11 m, comparable to the positional

errors obtained in [2]. Comparing to the baseline methods,
the proposed system reduced mean localization error by 59%
and standard deviation by 44%.

TABLE II: Distance measurements errors of the two trials
using temperature correction, comparing to ToF method
without temperature correction

Trial 1 Trial 2

Simple-
TOF

Temp-
TOF

Simple-
TOF

Temp-
TOF

Mean Err. (m) 4 2 10 4
Median Err. (m) 4 1 10 4
SD Err. (m) 2 1 6 3

TABLE III: Angle measurements errors of the two trials
using MILP, comparing to linear regression drift correction.

Trial 1 Trial 2

LS-
TDOA MaxBound-

TDOA

LS-
TDOA MaxBound-

TDOA
Mean Err. (rad) 0.72 0.36 0.77 0.49
Median Err. (rad) 0.72 0.34 0.77 0.51
SD Err. (rad) 0.37 0.19 0.42 0.25



TABLE IV: State estimation positional errors of the two
trials using MILP and temperature correction, comparing to
baseline method.

Trial 1 Trial 2

Simple-
TOF +

LS-
TDOA

Temp-
TOF +

MaxBound-
TDOA

Simple-
TOF +

LS-
TDOA

Temp-
TOF +

MaxBound-
TDOA

Mean Err. (m) 35 12 33 16
Median Err. (m) 32 8 34 13
SD Err. (m) 27 11 12 11

VIII. CONCLUSION AND FUTURE WORKS

Experimental results show that Algorithm 1 is capable of
reducing the effects of non-linear drift and reducing the TOF
range measurement error by a significant margin. Algorithm
2 is capable of reducing the TDOA error significantly from
a naive linear fit of the clock differences. Overall, the
localization system is able to achieve a localization error
comparable to that shown in [2] with two synchronized
hydrophones. This paper makes several contributions in the
future of marine animal tracking with AUVs, including: 1) a
novel mixed integer programming approach that dynamically
accounts for clock skew between two clock 2) a new tem-
perature based calibration method for non-linear drift, and
lastly 3) an inexpensive way for researchers to incorporate
off the shelf unsynchronized sensor systems with AUVs.

Future works for this project include using temperature-
dependent sound velocities in calculations, and conducting
longer experiments to further validate the effectiveness of
the system in real time tracking. Another extension of this
work is the application of the localization system to existing
passive acoustic tracking arrays.
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