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Abstract

This paper presents coupled and decoupled multi‐autonomous underwater vehicle

(AUV) motion planning approaches for maximizing information gain. The work is

motivated by applications in which multiple AUVs are tasked with obtaining video

footage for the photogrammetric reconstruction of underwater archeological sites.

Each AUV is equipped with a video camera and side‐scan sonar. The side‐scan sonar is

used to initially collect low‐resolution data to construct an information map of the

site. Coupled and decoupled motion planning approaches with respect to this map are

presented. Both planning methods seek to generate multi‐AUV trajectories that

capture close‐up video footage of a site from a variety of different viewpoints,

building on prior work in single‐AUV rapidly exploring random tree (RRT) motion

planning. The coupled and decoupled planners are compared in simulation. In

addition, the multiple AUV trajectories constructed by each planner were executed

at archeological sites located off the coast of Malta, albeit by a single‐AUV due to

limited resources. Specifically, each AUV trajectory for a plan was executed in

sequence instead of simultaneously. Modifications are also made by both planners to

a baseline RRT algorithm. The results of the paper present a number of trade‐offs
between the two planning approaches and demonstrate a large improvement in map

coverage efficiency and runtime.
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1 | INTRODUCTION

The discovery and mapping of historical archeological sites present

an ongoing challenge for marine archeologists. One common method

for surveying areas of interest utilizes side‐scan sonar towed from a

surface vessel, which requires substantial equipment overhead and

manual operation (Blondel, 2010). Recently, autonomous underwater

vehicles (AUVs) have been deployed as a more efficient alternative to

towed systems (Fallon, Kaess, Johannsson, & Leonard, 2011; Paull,

Saeedi, Seto, & Li, 2014; Ruiz, DeRaucourt, Petillot, & Lane, 2004).

AUV trajectory planning for archeological surveying typically

involves a manually planned lawnmower pattern that covers the

entirety of the surveying area.

Upon discovery of interesting sites in a survey area, divers or

remotely operated vehicles (ROVs) are often sent to investigate the

location and capture close‐up video footage for three‐dimensional

(3D) photogrammetric reconstruction (McCarthy & Benjamin, 2014;

Van Damme, 2015). Technical divers are able to explore down to

100m below the ocean surface, while ROVs can be used in deeper

waters but require a boat to be in close proximity to the site of

interest. AUVs provide solutions to the difficulties posed by the

aforementioned methods, as they are capable of operating in deep
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waters and can be deployed far away from the site of interest,

removing the need for a nearby boat.

In Viswanathan et al. (2017), a novel single AUV motion

planning approach was presented for creating 3D photogram-

metric reconstructions of shipwrecks using AUVs equipped with

side‐scan sonar and cameras. The full pipeline involves multiple

AUV deployments. First, the AUV surveys an area of interest

using sonar, which creates a coarse seafloor map. The map is then

used to generate AUV trajectories with the objective of maximiz-

ing information gain, for example, the total number of unique

viewpoints of the site of interest a given trajectory captures.

Generation of robot trajectories is accomplished using rapidly

exploring random trees (RRTs) (Kuffner & LaValle, 2000). Experi-

ments showed the planning algorithm was able to successfully

create trajectories that allowed for 3D reconstruction of several

known wrecks along the coast of Malta.

This paper builds on previous work and presents a multi‐AUV
motion planning method for constructing 3D maps of marine

archeological sites. Motion planning for multiple AUVs presents a

number of challenges, including (a) collision prevention between

robots, (b) viewpoint distribution across robot trajectories, and

(c) runtime of generating such trajectories. The fieldwork for this

study was conducted using the OceanServer Iver3 AUV ( Figure 1a).

The AUV was equipped with an EdgeTech 2205 side‐scan sonar, as

well as a GoPro HERO4 camera. Using seafloor maps generated by

the side‐scan sonar during initial surveys, two multirobot RRT‐based
approaches were implemented and tested to efficiently record video

footage of various archeological sites in Malta. The motion planning

models extend the single robot case through a number of significant

algorithmic changes and runtime improvements. Comparisons are

also presented between the coupled RRT algorithm (that searches

the composite configuration space of all robots) and the decoupled

RRT algorithm (that sequentially searches each individual robot’s

configuration space).

Specifically, this paper presents a number of contributions to the

field of underwater robotics

• A coupled multi‐AUV planning approach that grows a single RRT,

simultaneously generating trajectories such that all robot dives are

time‐synced with each other.

• A decoupled multi‐AUV planning approach that sequentially

generates robot trajectories, removing viewpoints that prior robots

have obtained from the shared map to maximize information gain.

• Simulations comparing the two planning approaches, which

indicate decoupled planning is more time‐efficient, covers a larger

percentage of a given area of interest, and scales more effectively

to large search areas.

• Validation of algorithm feasibility via AUV deployments and

mapping of several underwater archeological sites, (e.g., plane

wrecks and shipwrecks) located along the coast of Malta. Since

only a single AUV was available, multi‐AUV plans were validated

by deploying the same AUV for each individual AUV trajectory

of the plan that was designed to be run simultaneously.

The paper is organized as follows. Section 2 presents relevant

background and prior research on photogrammetry, AUV motion

planning, and multirobot motion planning (MRMP). Section 3 outlines

the complete AUV 3D photogrammetric reconstruction system.

Sections 4 and 5 describe the MRMP method. Sections 6 presents

and analyzes the simulations and field experiments that were

performed. Finally, Section 7 discusses conclusions and future work.

2 | BACKGROUND

Photogrammetry is the process of using photographs to construct 3D

surface models and has been used to study underwater archeological

sites (Drap et al., 2015; Gambin, 2011; von Fock et al., 2017). To create

such visualizations, triangulation of still images from video data is

used to make 3D measurements from a variety of viewpoints (Olague

& Mohr, 2002). Since larger variations in camera angle yield more

accurate range calculations from triangulation, multiple camera angles

are essential for accurate photogrammetric reconstruction (Bern,

Eppstein, & Gilbert, 1994). Recently, AUVs have been used to collect

sensor data for reconstruction of underwater sites (Bingham et al.,

2010; Johnson‐Roberson et al., 2016; Ozog, Troni, Kaess, Eustice, &

Johnson‐Roberson, 2015; Skinner & Johnson‐Roberson, 2015;

von Fock et al., 2017). In Bingham et al. (2010), an AUV was

used to survey a shipwreck with multiple manually programmed

lawnmower patterns over 30 × 45m of seafloor. The AUV missions

F IGURE 1 (a) Iver3 AUV with side‐scan sonar at the front and a GoPro HERO4 attached under the rear handle. (b) GoPro footage of Maori
wreck in Malta, taken aboard the AUV and used for photogrammetric reconstruction. AUV, autonomous underwater vehicle [Color figure can
be viewed at wileyonlinelibrary.com]
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took over 6 hr and much of the mission time was spent surveying parts

of the ocean floor that did not contain the shipwreck.

Sampling‐based planners are a common approach to generating

AUV trajectories for information gain, as deterministic approaches

become infeasible in high dimensional spaces (Elbanhawi & Simic, 2014).

In particular, RRT‐based planners are most widely employed due to the

ability to quickly explore the search space (Hollinger, Englot, Hover,

Mitra, & Sukhatme, 2013; Hollinger & Sukhatme, 2014). Stochastic

methods such as STOMP have also been explored for AUV motion

planning (Galceran et al., 2015; Kalakrishnan, Chitta, Theodorou, Pastor,

& Schaal, 2011). More recent work includes that in Viswanathan et al.

(2017) and Palomeras, Hurtós, Carreras, and Ridao (2018), where AUV

trajectories were constructed with RRT type planners. RRTs can be

used when planning trajectories for robots with dynamic constraints, as

well as gathering information about an environment (Huang & Gupta,

2008; Lavalle & Kuffner, 2000; Yang, Gan, & Sukkarieh, 2013). These

sampling‐based methods can be directly applied to AUV motion

planning, where the objective is often to collect information about a

marine environment. Existing AUV information gathering planners differ

from the methods presented in this paper primarily in the information

objective function and method for reconstruction. While (Hollinger

et al., 2013) randomly samples viewpoints in the search space and

subsequently combines TSP and RRT algorithms to construct trajec-

tories, a discretized information map is used in the coupled and

decoupled planners presented. In addition, photogrammetric recon-

struction necessitates the use of cameras such as GoPros to capture

video footage, whereas bathymetry‐based surface reconstructions are

common to underwater inspection applications.

While video footage can be captured by a single AUV, it is

advantageous to deploy multiple AUVs to achieve greater coverage of

an area of interest in the same deployment time. RRT type algorithms

have also been employed for MRMP problems as shown in (Clark, 2004,

2005), although much of this study employed the algorithms for collision

avoidance with respect to obstacles as opposed to maximizing informa-

tion gain. In other previous studies, MRMP algorithms were designed to

maximize information gain in multirobot exploration and mapping

(Burgard, Moors, Stachniss, & Schneider, 2005; Simmons et al., 2000;

Visser & Slamet, 2008). In Visser and Slamet (2008), the information gain

of each robot is balanced with the cost of movement in the context of

multirobot frontier exploration. Similarly, Burgard et al. (2005) developed

a technique for distributing multiple robots to explore a broader range

of areas in their environment.

Most recent MRMP approaches employing RRTs exclusively apply to

robots capable of communicating with each other. However, underwater

communication between AUVs is typically unreliable and low bandwidth,

making the implementation of these approaches extremely challenging

(Cui, Li, & Yan, 2016; Desaraju & How, 2012; Jahn et al., 2017; Jung, Lee,

Lee, Choi, & Lee, 2009; Stephan, Fink, Kumar, & Ribeiro, 2017). In

Stephan et al. (2017), a decentralized multirobot system architecture was

presented for MRMP, with an emphasis on maintaining network integrity

between all mobile robots in the team during task execution. The authors

used a variation of RRT* for the control algorithm, divided into centra‐
lized and distributed controllers. The decentralized multiagent RRT

(DMA‐RRT) is another framework applicable to robot teams where

communication between robots is feasible (Desaraju & How, 2012). To

navigate to specific locations in the shared space, each robot expands its

own search tree using the Closed‐loop RRT (Kuwata et al., 2008). In

addition, to improve initial robot trajectories during task execution, the

framework includes a merit‐based token‐passing strategy. When a robot

wins a bid for the token, its trajectory is updated, and the resulting

information is broadcasted to all other robots. Because underwater

communication between AUVs is often low bandwidth and not depend‐
able, the aforementioned MRMP systems cannot be applied to multi‐
AUV planning since predefined trajectories are required before task

execution.

Less work has been dedicated to MRMP using RRTs for

information gain. While Cui et al. (2016) introduced the MDMI‐
RRT* for multi‐AUV scalar field sampling, the method requires an

online system where robots can iteratively update shared informa-

tion to reduce the uncertainty of the scalar field prediction. Similarly,

Jung et al. (2009) presents an online method for exploring unknown

terrains using multiple AUVs. To our knowledge, no prior work has

been published in multi‐AUV planning for 3D photogrammetric

reconstruction. With this in mind, the research presented aims to fill

this void by developing a multi‐AUV system that can employ one of

multiple approaches to RRT planning as applied to information gain.

3 | MULTI ‐AUV SYSTEM OVERVIEW

This paper proposes a multimission, multirobot approach for collecting

the data necessary to create a photogrammetric reconstruction of an

archeological site. Figure 2 shows a block diagram overview of the

primary components of the pipeline. The motion planners described in

F IGURE 2 Block diagram of the experimental pipeline for photogrammetric reconstruction
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Section 5 define one component of this system. During the first mission,

the AUVs are equipped with side‐scan sonar and deployed to follow some

trajectoryTsearch, typically a coarsely spaced lawnmower pattern, with the

goal of finding potential underwater archeological sites (e.g., Figure 3).

The sonar data Zsearch collected during this first mission is used to identify

sites of interest. This data is also used to create an information map I that

acts as the basis of the trajectory planner’s objective function. I is fed in as

the input to the RRT algorithm which generates a multi‐AUV trajectory

Tmapping for mapping the site. This trajectory is then postprocessed to be

kinematically and dynamically feasible for a physical AUV.

Once the trajectories are converted to mission waypoints, the

AUVs are equipped with cameras and deployed on a second mission

to follow Tmapping. The images Zmapping collected while following Tmapping

can be used to create a 3D photogrammetric reconstruction M of the

archeological site. As indicated by the feedback loop in the block

diagram, the map M can be used to create a new information map,

new trajectory Tmapping, and new mission for additional data collection

and improved mapping. This paper focuses on the bold box in the

block diagram, and each step in the box is described in the following

sections.

3.1 | Information map creation

The first stage in the trajectory planning is the creation of an

information map given the side‐scan sonar data. The information map

I is then queried by the motion planner to generate AUV trajectories

that obtain maximum information gain. I is produced in the format of

a two‐dimensional (2D) matrix with cell values that range from 0 to

255, where 255 represents high information gain and 0 is no

information gain. Two methods for creating the information map are

presented, such that I could be generated from either a sonar PNG

file or a point cloud PLY file.

3.1.1 | Information map creation via side‐scan sonar

Information maps can be created from sonar images of sites of

interest. The information maps are created through the following

localization procedure. The AUV’s onboard global positioning system

(GPS) records its position. The AUV takes sonar scans of information

maps and uses its GPS position to georeference each sonar image.

Based on a specific feature’s position in the georeferenced sonar

image, the feature is localized. Due to this method of localization,

the accuracy of the map is reflective of the accuracy of the

AUV’s position system. A USBL could have been used to increase

localization accuracy, but for the IVER3 AUV, a GPS is used to

localize while at the surface, and a Doppler velocity log (DVL) is used

below water. Since the position estimation will drift for AUV dives

when using only DVL, corrections to dive position estimation are

made post‐deployment by linearly interpolating between the AUV’s

dive and resurface GPS coordinates.

The steps for creating an information map from a sonar image are

shown in Figure 4 and are described as follows. First, the image

resolution is decreased and the format is changed from RGB to

F IGURE 3 Lawnmower trajectory for initial autonomous
underwater vehicle search mission [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 4 Block diagram of information map generation from the sonar PNG file [Color figure can be viewed at wileyonlinelibrary.com]
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grayscale. Next, the image centerline, that is, the nadir, is removed,

after which the image is passed through a gradient filter.

To increase the contrast of a site of interest, areas of high pixel

intensity, low pixel intensity, and high gradient are identified on the

image. First, in the Amplify High Gradient Cells step, all pixels with a

gradient greater than the threshold highGradτ are scaled by a factor

Gradσ . Second, in the Amplify High and Low Intensity Cells step, all pixels

with intensity greater than the threshold highIntensityτ are scaled by a

factor highIntensityσ and all pixels with intensity less than the threshold

lowIntensityτ are scaled by a factor lowIntensityσ .

These six parameters are tuned for each image because the

AUV’s height from the bottom varies between sonar scans, affecting

the brightness and contrast of each image. While this additional labor

reduces the autonomy of the system, tuning took on the order of

only 2 min for a single map.

The information map generated in Figure 5 illustrates how this

method not only identifies the site of interest but also highlights

important artifacts within the site, such as the edges of the ship and

the tall cabin in the middle.

After amplifying the areas of interest, an additional filter is added

which sets a cell to zero if all its neighbors are also zero; this is done

to minimize noise. The map is then adjusted using the Sobel operator

to increase information gain around areas of high gradient, amplifying

the edges of the site of interest. Finally, a 2D Gaussian Blur is applied,

which compensates for uncertainty in the AUV position from when

the sonar scan was taken.

3.1.2 | Information map creation via point cloud

The information map I can also be constructed from a 3D point

cloud. In some cases, this point cloud data would not be

obtained by the AUV. For example, the point cloud data in

Figure 5 was obtained from a previous reconstruction made

by divers. Though this implies the wreck is diveable, using an

AUV instead of divers would be favorable during constant

monitoring because it would prevent repeatedly sending divers

into deep water.

To create I from a 3D point cloud, it is first flattened into a 2D

elevation matrix E , where = { | = … = … }E e i m j n, 1, ; 1,ij . Here, eij is

the maximum height of all the occupied cells with indices i j, in the Z

direction. To extract areas of elevation variation, the map is adjusted

using the Sobel operator, as done in the sonar pipeline. The 2D Gaussian

Blur is also applied, again due to uncertainty in state estimation.

This method assumes that both tall artifacts and areas with

a large variance in height are of interest. Tall features are of

interest because a large, unnatural height off bottom often

indicates a site of interest. Similarly, a large change in height

typically indicates either the boundary of a wreck site or a feature

within the site of interest. Furthermore, these areas of the large

variation in height are of interest because these areas contain

complex 3D geometry that can only be reconstructed if viewed

from multiple viewpoints.

3.1.3 | Extending information maps to include view
angles

Planning was not performed in 3D space due to runtime constraints

of the algorithm. However, the 2D information map was extended

to incorporate discretized view angles as a third dimension. In this

method, the planning is still performed in 2D space; however, the

addition of the angle dimension incentivizes the trajectory planner

to generate trajectories that view each portion of the site of

interest from multiple angles, as multiple viewpoints are necessary

to create an optimal photogrammetric reconstruction. Given a

unique viewpoints that each cell can be viewed from, the map is

correspondingly expanded such that each cell is a discrete units in

the third dimension (Figure 6). With respect to the physical wreck,

the a viewpoints divide a full 360‐degree view of each cell location

into discrete angle ranges of size ∕a2π radians. Each cell in the new

3D map inherits the information gain that its respective 2D cell

held, representing the value of seeing high information areas from

all sides.

Hence, when the map is expanded to include view angles,

the total amount of information available to be gathered on the

map is multiplied by a. A visualization of the expansion of the

information map to the 3D form is shown in Figure 6. In all

simulations and fieldwork, the number of angle ranges is set to

four unless otherwise noted.

F IGURE 5 Block diagram of information map generation from PLY file [Color figure can be viewed at wileyonlinelibrary.com]
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4 | MOTION PLANNING

After the initial search mission and information map construction, the

multirobot RRT motion planner is executed to solve the following

problem. Let n robots operate within a 3D bounded workspace W ,

where the depth boundary of W is above the object of highest

elevation of the site and W is free of obstacles. At a given time step t,

= [ ]X x y z, , ,i t i t i t i t i t, , , , ,θ is the state vector for a specific robot and ui t, is

the control effort for that robot. The goal is to determine each robot

i’s time‐limited sequence of control actions = { …}U u u u, , ,i i i i,0 ,1 ,2 that

maximizes the information gain O. To summarize, the problem is to:

Find

( … … )O U U X X, , ,U
max

n n1 1,0 ,0 (1)

Subject to

∑( … … ) = ( )
∈

O U U X X Info I X, , , ,n n
X E

D1 1,0 ,0

D

(2)

( ) = ⋃ ⋃
= =

E U X X,
i

n

t

p

i t D0
1 0

, , (3)

∈X Wi t D, , (4)

= ( )X D Xi t D i t, , , (5)

= ( )+X f u X,i t i t i t, 1 , , (6)

The function ( )Info I X, D returns the information gain when a robot

visits discretized state XD of the information map I. The set ( )E U X, 0

refers to the union of all discretized states visited over the course of all

n of the robot trajectories that follows the p control actions of the setU.

The function ( )D Xi t, returns Xi t D, , , a spatially discretized version of

the AUV state vector. In this case, the first three elements of Xi t D, , are

the integer index values associated with the closest 3D cell of the

information map I, and the last element corresponds with an integer

index value associated with a discretization of the AUV’s yaw angle.

For example, if the state Xi t, is contained within cell c3,4,6 of I, and the

yaw angle is 85 degrees, then the discretized state is Xi t D, , =[ ]3461

for an angle discretization resolution of 90 degrees. Finally, the

function ( )f u X,i t i t, , represents the robot kinematics or dynamics

(specific to the application) of robot i . For both coupled and

decoupled multirobot motion planners, trajectories are generated

using an RRT that maximizes O as outlined in the problem definition.

5 | MOTION PLANNING SOLUTIONS

Two different multirobot RRT planners are presented in this section

and are referred to as the coupled planner and the decoupled

planner. The coupled planner concurrently generates trajectories for

all robots, while the decoupled planner generates each robot

trajectory sequentially. Several modifications to the basic RRT

algorithm are made in both variants to improve runtime and

information gain across robot trajectories (discussed in Section

5.3). After creating the RRT data structures modeling the potential

robot trajectories, the trees are fed to an objective function that

compares the score of each of the leaf nodes. The leaf node with

the highest score is picked, and the best trajectory is extracted by

tracing the best leaf node back to the root node.

5.1 | Coupled planning

Given m robots, the coupled planner simultaneously generates

trajectories by constructing a roadmap ( )R N E, of node set N and edge

set E . Each node ∈n Ni is defined by the states of all robots at a given

timestamp ti , for example, [ … ]X X, ,i
m
i

1 , where Xj
i is the state of the jth

robot of node i. The state is defined as [ ]x y z, , ,j
i

j
i

j
i

j
iθ . As well, each edge

∈e Eik is defined by a node pair { }n n,i k . Since all robots have the same

timestamp in a given node, each robot dives for the same length to cross

an edge (assuming all robots travel at the same constant speed).

Algorithm 1: coupledMultiRobotRRT(n0)

Input: start node n0

Output: bestTrajectory( ( )R N E, )

1: Add n0 to ( )R N E,

2: for ←i 1 to numExpansions do

3: ←nexp selectNodeToExpand ( ( )R N E, )

4: ←nnew expandNewNode(nexp)

5: Add nnew and edge ( )n n,exp new to R

6: if nnew in endgame region then

7: add nnew to endNodes

8: endif

9: endfor

10: return bestTrajectory( ( )R N E, )

F IGURE 6 Transformation of the information map to include the
third dimension of viewpoint angle. Performed on a 4x4 information

map with =a 4. On the left, the cell at position (4, 1) has been shaded,
and the four arrows demonstrate the four distinct viewpoint angles. An
example angle range is labeled ∕2π ; however, this range spans ± ∕4π

from its center, so the effective angle range is [ ∕ ∕4, 3 4π π ]. On the

right, the information map has been expanded to 3D to account for

viewpoint angle. The shaded cell at position (4,1,1) corresponds to the
information that would be gained by the AUV traveling through the 2D
planar map cell at position (4,1), with the AUV having camera angle in
range [− ∕ ∕4, 4π π ]. Note the camera angle, in this case, is measured

with respect to the XY plane, with 0 radians aligned with the x‐axis.
AUV, autonomous underwater vehicle
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Algorithm 1 presents the steps for the planner, and Figure 7

provides a corresponding visualization. In line 1, node n0 which

includes the initial states of all robots is created and added to the

roadmap R. For each expansion (line 2), an existing node nexp in the

tree is randomly selected in line 3 by Algorithm 5 (discussed in

Section 5.3.1). In line 4, serial expansion is then used to expand each

robot j from state X j
exp to a new state Xj

new , thereby generating a new

node nnew (see details in the following section). After a new node is

expanded, it is added to the tree in line 5. If the timestamp tnew of the

new node nnew reaches the maximum time allotted for a robot

trajectory, nnew is added to endNodes in line 7. After numExpansions

new nodes have been created, all trajectories that start at n0 and end

at a node in endNodes are evaluated to determine which trajectory

maximizes information gain and should be returned (line 10).

Algorithm 2: expandNewNode_coupled(nexp)

Input: n HICs,exp

Output: nnew

1: ←m Number of robots

2: ←d getRandomDiveDistance()

3: Shuffle order of robots

4: for ←j 1 to m do

5: if () < −rand HIC expγ then

6: ←XHIC getStateOfRandHIC(HICs)

7: ← ( − − ) #atan X y X y X y X x2 . . , . .j
new

HIC j
exp

HIC j
expθ expand

towards random HIC

8: else

(Continues)

9: ← (− )rand ,j
newθ π π

10: end if

11: while collision ( [ ])− −X X X, , , : ,j
exp

j
new exp new

j
exp

j
new

1 1 1 1θ θ θ do

12: ← (− )rand ,j
newθ π π

13: end while

14: ←Xj
new expandState( )X d, ,j

exp
j
newθ

15: end for

16: returnnnew

5.1.1 | Node expansion for coupled planning

Algorithm 2 presents the steps for node expansion used by the

coupled planner. Since all robots have the same timestamp at a given

node and all robots are assumed to travel at the same constant

speed, the distance each robot travels for a given expansion is the

same for all robots and defined in line 2. The function getRandom-

DiveDistance() determines this distance d by sampling from a

bounded uniform distribution.

To prevent any individual robot from being prioritized, the order

in which the robots are expanded is randomized at every node

expansion. The heading j
newθ of the dive for the jth robot is

determined by one of two sampling methods chosen by the

parameter ∈ [ ]− 0, 1HIC expγ . The first method expands in the direction

of a random High Information Configuration node (line 7, discussed

in Section 5.3.2), while the second samples a random heading from

a uniform distribution between − π and π (line 9). If the chosen

heading causes a collision with previously expanded robots, a random

heading is re‐sampled from the uniform distribution until the dive is

collision‐free.
If the robots trajectories are not coplanar, that is, each robot

dives to a different depth, no collision checking is required.

Otherwise, collision checking is performed in the collision()

function (line 11) and takes in the current robot state X j
exp, the

proposed dive heading j
newθ , and the current states of previously

expanded robots and their dive headings [ ]− −X X, : ,exp new
j
exp

j
new

1 1 1 1θ θ . If

two robot dives of length d are coplanar, a sufficient method for

collision checking is to consider their current positions { }X X,i
exp

k
exp

and proposed dive headings { },i
new

k
newθ θ (assuming both travels at

the same constant speed). Robots i k, will collide if they travel the

same distance to reach their intersection point for the proposed

dives. For instance, in Figure 7, Robots 1 and 2 will not collide in

the dive from Node 4 to Node 5, as Robot 1 has reached its

destination before Robot 2 intersects its trajectory.

In line 14, when the robot’s new expansion is determined

to be collision‐free, the new state for robot j is calculated by

the function expandState(), which implements the following

equations.

F IGURE 7 Visual representation of coupled node structure and

expansion for two robots. Each node includes the state of all robots
at a particular time step and is color coded accordingly. Node 5
shows the next expansion of the RRT trajectory in red; at this stage,

the expansion is being checked for collisions before being added to
the tree. RRT, rapidly exploring random tree [Color figure can be
viewed at wileyonlinelibrary.com]
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= + ( )X x X x d. . cosj
new

j
exp

j
newθ (7)

= + ( )X y X y d. . sinj
new

j
exp

j
newθ (8)

=X .j
new

j
newθ θ (9)

5.2 | Decoupled planning

In contrast to the coupled planner, the decoupled planner creates an

individual roadmap and trajectory for each of the m robots. The

planner creates these robot trajectories sequentially, such that each

robot’s path is built to be collision‐free with respect to the previous

robots’ trajectories. Specifically, for each robot rj, such that ∈ [ ]j m1, ,

the planner generates a roadmap ( )R N E,j j j , where Nj and Ej are the

respective node sets and edge sets. Each node ∈n Nj i j, is defined by

the state in time and space of robot j associated with node i . The

state is defined as [ ]x y z, , ,j i j i j i j i, , , ,θ . Similar to the coupled planner, each

edge ∈e Ej ik j, is defined by the node pair { }n n,j i j k, , .

Algorithm 3: decoupledMultiRobotRRT(n0)

Input: list of start nodes n0

Output: bestTrajectories( ( ) ( )R N E R N E, : ,m m m1 1 1 )

1: Shuffle order of robots

2: for ←j 1 to m do

3: Add nj,0 to ( )R N E,j j j

4: for ←k 1 to numExpansions do

5: ←nj exp, selectNodeToExpand( ( )R N E,j j j )

6: ←nj new, expandNewNode(nj exp, )

7: if nj new, in endgame region then

8: add nj new, to endNodesj

9: end if

10: Add nj new, and edge ( )n n,j exp j new, , to ( )R N E,j j j

11: end for

12: end for

13: return bestTrajectories( ( ) ( )R N E R N E, : ,m m m1 1 1 )

Algorithm 4: expandNewNode_decoupled nexp( )

Input: n HICs,exp

Output: nnew

1: ←d getRandomDiveDistance()

2: if () < −rand HIC expγ then

(Continues)

3: ←XHIC getStateOfRandHIC(HICs)

4: ← ( − − )atan X y X y X y X x2 . . , . .new
HIC

exp
HIC

expθ # expand

towards random HIC

5: else

6: ← (− )rand ,newθ π π

7: end if

8: while

collision( [ … ])− −X X X, , , , ,exp new
j j0 0 1 1θ θ θ do

9: ← (− )rand ,newθ π π

10: end while

11: ←Xnew expandState( )X d, ,exp newθ

12: returnnnew

Algorithm 3 presents the steps for the decoupled planner, and

Figure 8 shows a corresponding visualization. As shown in line 2 of

Algorithm 3, the algorithm loops over all m robots to make a separate

trajectory for each. In line 3, the start node nj,0 for a given robot is

initialized and added to the robot’s roadmap Rj. For a set number of

expansions (line 4), an existing node nj exp, is selected from the tree as

demonstrated in Algorithm 5 (discussed in Section 5.3.1). In line 6,

nj exp, is used as the parent node for generating a new node nj new,

(details discussed further in the following section). If the new node’s

corresponding time is greater than the maximum robot trajectory

time, the node is added to endNodesj in line 8. In line 10, the new node

is added to the robot’s tree. Once numExpansions nodes have been

generated, the trajectories for robot j that begin at nj,0 and end at a

node in endNodesj are evaluated to decide which trajectory

maximizes information gain and should be returned in line 13.

Because the robot trajectories are generated sequentially, the

optimal trajectory for each robot is also chosen sequentially. To optimize

F IGURE 8 Visual representation of decoupled node structure

and expansion. Each node is represented by a black dot on each
trajectory. Node 6 of Robot 2 shows the next expansion of the Robot
2 RRT trajectory in red; at this stage, the expansion is being checked

for collisions with the previously planned Robot 1 trajectory before
being added to the tree. RRT, rapidly exploring random tree [Color
figure can be viewed at wileyonlinelibrary.com]
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the trajectories, the decoupled planner adjusts the information map after

each robot trajectory is planned to remove the information observed by

the previous robot from the information map. This adjustment is

demonstrated visually in Figure 9, which shows the information map

before and after a planned robot trajectory. The adjustment helps the

decoupled planner converge to 100% map coverage, as each robot is

incentivized to gain new information on the map that has not yet been

seen by other robots. A disadvantage to this method is that the

information gain is not equally dispersed between all robots, as robots

that are planned first attain most of the information, leaving little

information gain remaining for the robots planned later.

5.2.1 | Node expansion for decoupled planning

Algorithm 4 describes the expansion step that takes place on

line 6 of the overall decoupled algorithm (Algorithm 3). The algorithm

selects a random dive distance within the minimum and maximum

dive lengths on line 1. On lines 2 through 6, the dive heading is

determined by the same logic seen in Algorithm 2 and is discussed

further in Section 5.3.2. On line 8, collision checking is performed.

The collision checking function takes in the new node state Xj new, ,

the proposed heading j new,θ , and the list of previously planned robot

trajectories; this list is composed of robot states and headings,

represented by the list [ … ]− −X X, , ,j j0 0 1 1θ θ .

The function checks to ensure that the proposed new node state

does not collide with any previously planned trajectories by

calculating potential intersections between them. The function uses

several cases to optimize collision checking runtime and minimize the

number of parameterized line‐intersection collision checks required.

If the function detects a collision, a random new heading for the new

node is chosen by repeating the call to the expandNewNode function

until the expansion is collision‐free. Once collision‐free, the new state

is calculated in line 11 using Equations (7)–(9) , as with the coupled

planner. Finally, the corresponding new node nnew is returned.

5.3 | Improvements common to coupled and
decoupled planners

To improve map coverage and decrease runtime, several modifications

are made to the general RRT algorithm. First, a novel node selection

framework stores nodes into time‐discretized cells, simplifying the

selection process by choosing a node in a random time cell rather than a

random space cell as done by other researchers (Clark, 2004; Kindel,

Hsu, Latombe, & Rock, 2000). Second, high information configuration

(HIC) nodes are identified and stored to guide the planner toward high

information areas in the map. Third, a modification called scanning

spread is included to better model the information gain attained by a

given robot trajectory.

5.3.1 | Node selection for expansion

In sampling‐based motion planning, it is often beneficial to discretize the

search space for the sake of node declustering. Previously, motion

planners have discretized the configuration space in several ways. In

Kindel et al. (2000), the planner divides the configuration space into grid

cells, selecting a random cell, then randomly selecting a node within that

cell. This method prevents node clustering by giving nodes in less

populated grid cells a higher probability of being expanded upon. Bohlin

(2001) presents a method of reducing runtime by using both a local and

global planner to search a grid‐discretized configuration space. In this

approach, the global planner restricts the portion of the grid the local

planner is allowed to search and expands this area until a solution

connecting the start to the goal is found. In Lindemann and LaValle

(2003), a similar multidimensional grid is developed; the algorithm

recursively divides each grid cell of the configuration space grid into

smaller cells until a trajectory to the goal point is found.

The node selection method presented in this paper discretizes the

search space based on time rather than the configuration space. When

the RRT planner is called, a set number (typically 5–10) of time‐indexed
node containers are initialized in a dictionary to organize the nodes as

the tree is created. This structure makes it easy to place a node into one

of the discrete, time‐indexed cells after it is created.

To initialize the time‐indexed cells, the root node is placed in the

lowest time cell and all other cells are initialized as empty lists. An

extra cell is created at the end of the dictionary that holds all nodes

over the maximum time; this cell is called endNodes and is never

chosen from for node expansion. In addition, a secondary list f tracks

which cells already contain nodes to ensure the algorithm does not

expand from an empty cell. During each expansion, the new node is

sorted into the appropriate cell based on its timestamp, and f is

modified accordingly.

Algorithm 5: RRT Node Selection

1: if ( ) ≠len H 0 and () < −rand HIC selγ then

2: nexp = [ ]H randIndex

3: else

4: randCell = cells [ () ∈ ]rand f

5: = () ∈n rand dictexp [randCell]

6: end if

F IGURE 9 Visual representation of information map adjustment

performed after each robot is planned for decoupled planner. The
original information map, robot trajectory over the information map, and
final information map after adjustment are shown in respective order.

Gray cells represent cells containing information, while white cells
represent areas with no info. Note this figure assumes the planner is
being run without angles (Section 3.1.3) or scanning spread (see Section

5.3.3) enabled [Color figure can be viewed at wileyonlinelibrary.com]
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Algorithm 5 shows the process used to select a node to expand

upon. The planner utilizes one of two selection methods for each

node selection, and the relative use probability of the methods is

controlled by the parameter −HIC selγ . If the first method is chosen, a

random HIC node (discussed in the following section) from the list of

HICs H is chosen to expand from (line 1). Otherwise in line 3, a

random cell is chosen from the list of filled cells f , and a random node

nexp is selected from that cell.

After node selection in both planners, the coupled and

decoupled methods follow the steps shown in Algorithms 1 and

3, respectively, and a new node nnew is created and added to the

RRT. After nnew is created, the planner stores the new node in the

appropriate cell. To do so, the planner checks if the new node’s

time nnew t, is greater than the max time tmax; if so, the node is

appended to the last cell. Otherwise, the node is placed in the

appropriate bin by calculating the cell index c. This value is

computed from n t,new t max, , and the total number of discrete time

cells numCells; the calculation is shown in Equation (10) . To ensure

all filled cells are marked as such, the algorithm checks if c is in the

filled cells list f , and if not adds c to f . Finally, nnew is added to the

cell with index c.

= ( × ∕ )c int n numCells t .new t max, (10)

This method provides declustering by discretizing the work-

space in time. Similar to how Kindel et al. (2000) shows that

discretizing the search space spatially provides node declustering,

dividing time into temporal chunks causes the node selection

process to be more likely to expand from nodes with a higher

timestamp. This is because the probability of randomly picking a

particular node in a bin with fewer other nodes is higher than the

probability of picking a node in a more filled (and typically shorter‐
time) bin. The method also benefits algorithm runtime; by using

fewer discrete node containers than spatial binning, the algorithm

does fewer computations when performing operations over the

entire set of node containers.

5.3.2 | High information configuration nodes

To optimize information gain, the planner is motivated to sometimes

create new expansions based on nodes previously marked as

containing high information. The HIC nodes are stored in a list H,

composed of all nodes in the tree for which the immediately

preceding edge gathers an amount of information above a specified

threshold. Both the node selection and expansion components of the

general RRT algorithm were modified to encourage the creation of

new nodes around HICs.

In the node selection algorithm, a random HIC node is chosen for

expansion with probability −HIC selγ , where −HIC selγ is a tuning

parameter. As outlined in Algorithm 5, if a random number chosen

from a uniform distribution between 0 and 1 is less than the

threshold −HIC selγ , a random HIC is picked from H as the node to

expand upon. This encourages the creation of trajectories in

information rich areas. In the node expansion algorithms for both

coupled and decoupled planners (Algorithms 2 and 4, respectively), a

robot dives toward a random HIC with probability −HIC expγ . If a

random number is less than −HIC expγ , the expansion algorithm picks its

heading by expanding toward a random HIC. This incentivizes the

algorithm to expand nodes toward areas of high information.

To evaluate the utility of HICs, tests were run comparing the map

coverage and runtime of the motion planning algorithm using HICs in

both node selection and expansion. Figure 10a shows that using HICs

in selection provides an increase of approximately 5% in coverage in

comparison to having no HICs, while using HICs in expansion doubles

map coverage. Further, combining both methods yields map coverage

percentages that are almost triple the original amount without HICs.

Figure 10b indicates that incorporating HICs in the planning

algorithm does not increase runtime significantly.

F IGURE 10 Plots of (a) coverage and (b) runtime as a function of the number of node expansions for a single robot, with
= =− − 0.5.HIC sel HIC expγ γ The results indicate that when HICs are incorporated in both node selection and node expansion, map coverage

improves by approximately 25%
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5.3.3 | Ray casting and scanning spread

To accurately and efficiently calculate the information captured by

the edge created in each expansion step of the planner, a new

method was used to construct the set of visited cells stored by each

node. Ray casting is essential for reducing the runtime of the cell

aggregation process, while scanning spread allows the planner to

approximate the reality of the viewing breadth of the AUV’s onboard

video camera.

Ray casting is implemented using vectorization to efficiently

find all cells visited by the edges of the robot trajectories. Using

this method helps reduce the computational cost of finding the

trajectory’s visited cells, as it removes the need to iterate over the

entire information map. This was the case in previous work

(Viswanathan et al., 2017). However, vectorization alone is

insufficient because only cells directly intersecting the raycasted

trajectory are marked as “visited cells.” To account for the wide‐
angle of the onboard video camera, a scanning spread function is

implemented such that the set of visited cells more accurately

represents all reconstruction data captured. The scanning spread

function marks additional cells surrounding each cell on the AUV

trajectory as visited, and the number of additional cells marked is

set by a constant variable σ . For example, when σ is set to 1, the

AUV trajectory marks a ×3 3 grid centered at each visited cell

as visited. The impact of varying σ values is demonstrated in

Figure 11.

In addition to allowing the algorithm to more accurately assess

the map coverage of a planned trajectory, this method also

increases the runtime of the planner significantly for higher σ

values. This is because the number of cells marked by the scanning

spread increases with O( )2σ ; thus, the number of operations per

node expansion also increases by 2σ . Figure 11c verifies that the

planner is in fact O( )N2 with respect to σ . To obtain optimal

photogrammetry data, some scanning spread is necessary to

accurately capture which cells are “seen" by a given trajectory.

As such, the tests for this paper were run with a σ value of two,

unless indicated otherwise.

5.3.4 | Comparisons of basic versus improved
planners

To test the effectiveness of the improvements made to the basic

RRT algorithm, map coverage and algorithm runtime tests were

run comparing a basic RRT to the improved algorithm. These tests

were run with one robot, so that the tests were not characteristic

of features specific to the decoupled or coupled planner. The

tests were run on a low resolution ×45 45 cell information map of

the Bristol Beaufighter plane wreck. Data for coverage and

runtime was taken, and plots for coverage per runtime were

created to compare the efficiency of the algorithms at obtaining

information. Figure 12 demonstrates the results, which show that

the improved algorithm was much more efficient at gaining map

coverage than the basic algorithm (note the difference in z‐axis
scales between a and b). In Figure 12a, the plot for the improved

algorithm is shown, which ranges from efficiency values of

0.3297–3.6905 with an average efficiency of 1.1480% coverage

per second. Contrarily, the basic algorithm efficiency values

ranged from 0.0025 to 0.0397 with an average value of only

0.0133% coverage per second. Overall results showed how the

modifications to the general RRT algorithm vastly improved the

algorithm’s effectiveness.

F IGURE 11 Cells marked as visited by
varying σ values. The center light gray cell
indicates the cell intersected by the

autonomous underwater vehicle
trajectory, and the surrounding dark gray
cells indicate additional cells marked as

visited by the scanning spread. (c) shows
the runtime of the scanning spread
functionality [Color figure can be viewed at
wileyonlinelibrary.com]
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6 | VALIDATION EXPERIMENTS

To test the performance of the coupled and decoupled planners,

four types of validation experiments were carried out:

1. Generation of example trajectories over several different maps to

demonstrate planner effectiveness on both single and multiple

site maps.

2. Simulations comparing how information map coverage and

runtime of each planner differed when varying the number of

robots and the number of discrete sites of interest on the

information map.

3. Simulations comparing the coupled and decoupled planners,

testing how their information map coverage and runtime

differed when run with the same constants on the same

information map.

4. AUV deployments using an Oceanserver Iver3 AUV to validate

the generated trajectories’ effectiveness at collecting photogram-

metry data on real sites of interest.

6.1 | Example trajectories

The decoupled planner was tested using information maps of

different individual wrecks, as well as maps containing multiple

wrecks in close proximity to each other. First, the planner was

tested in simulation for 1–4 robots on the five following real

underwater archeological sites: the Bristol Beaufighter, Schnell-

boot S‐31, HMS Stubborn, HMS Maori (all located along Malta’s

coast), and an unnamed shipwreck located off the coast of Catalina

Island. These five maps contained one primary site of interest.

Example trajectories from the decoupled planner are shown for

the five sites in Figure 13 . For visual clarity, an exhaustive time

horizon was not used to distinguish between individual robot

paths. The resultant trajectories show that the planners were

able to successfully navigate the site of interest within the

information map and obtain coverage of the site from several

different angles. There is also a higher density of trajectory nodes

near areas of high value on the information maps.

Additional tests were run on maps with multiple sites of interest.

The map shown in Figure 14a was created from sonar data containing

two sites of interest. A second multiple site map was artificially

created by duplicating the sites of interest from the map shown in

Figure 14a and distributing them randomly throughout the map.

Example decoupled planner trajectories for these two maps are

shown in Figure 14.

The generated trajectories shown in Figure 14a demonstrate how

the planner was able to utilize multiple robots to visit both sites of

the two site map and get better coverage of the map than one robot

could have. This is also seen in Figure 14b; by increasing the number

of robots when mission time is limited, coverage is increased because

individual robots can visit unique areas of the map. A further

discussion of the effects of number of robots and number of sites of

interest on map coverage is presented in Section 6.2.

6.2 | Map coverage of varying sites and robots

Experiments were conducted for both planners testing the

relationship between map coverage, the number of sites of

interest on a given information map, and the number of robots

used to plan a given mission. Trials for 1–10 robots were run

on a sequence of 10 maps which ranged from 1 to 10 sites of

interest. In every trial, the amount of total information in the

map was kept constant; this was necessary to ensure a fair

comparison of information covered between maps. In addition,

all cells with non‐zero value contained the same amount of

information, such that robots were equally incentivized to

visit any cells of interest. Example information maps are shown

in Figure 15 .

F IGURE 12 Comparison plots for basic and improved planners for one robot. Plots for the improved planner were generated with the angle
map feature disabled to ensure a fair coverage comparison. Note: the z‐axes use drastically different scales [Color figure can be viewed at

wileyonlinelibrary.com]
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Four different versions of these tests were conducted. Both the

decoupled and coupled planners were tested, and each of those

planners was tested with and without the view angles feature

described earlier in Section 3.1.3. Figure 16 shows the results of

these tests. Figure 16a shows that for the decoupled planner, the

map coverage converges to almost 100% for all maps when >m 8. By

contrast, the coupled planner (Figure 16b) coverges to 100%

coverage only on the single site map with 10 robots.

F IGURE 14 Example mission plans for decoupled planner on multiple site information maps generated from sonar data. Note that axis
scales are omitted as the sites were synthetically generated. (a) 2 robot trajectories, 2 sites of interest, (b) 5 robot trajectories, 6 sites of interest
[Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 13 Example mission plans for decoupled planner on single site information maps; trajectories are shown in red, green, and blue. The

plans shown were not run to exhaustive time horizons for visual clarity. (a) Bristol Beaufighter, (b) Catalina Shipwreck, (c) HMS Maori, (d)
Schnellboot S‐31, and (e) HMS Stubborn Trajectories [Color figure can be viewed at wileyonlinelibrary.com]
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6.3 | Comparisons of coupled versus decoupled
planners

To evaluate the trade‐offs between the coupled and decoupled

planners for use in fieldwork, performance plots were generated in

simulation to compare both information map coverage and

runtime. Figure 17a compares what percentage of the information

map is covered as the number of robots increase. The decoupled

planner asymptotically approaches 100% coverage of a ×45 45

cell map of the Bristol Beaufighter wreck, while the coupled

planner converges to about 70% coverage. Figure 17b shows that

the runtimes of both planners scale linearly with the number of

robots, with the decoupled planner being about 20% more

efficient.

F IGURE 15 Examples of the information maps used on robots vs. sites tests [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 16 Plots of map coverage as a function of the number of robots and the number of sites of interest on a given information map.
Trials were run with and without angles feature enabled: (a) is coverage for the decoupled planner without angles enabled, (b) is coverage for

the coupled planner without angles enabled, (c) is coverage for the decoupled planner with angles enabled, and (d) is coverage for the coupled
planner with angles enabled. Each data point is averaged over 10 trials. (a) Decoupled—viewpoints not considered, (b) Coupled—viewpoints not
considered, (c) Decoupled—viewpoints considered, (d) Coupled—viewpoints considered [Color figure can be viewed at wileyonlinelibrary.com]
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The convergence behavior of the two planners can be accounted

for by two different phenomena. In the decoupled planner, the

information map is adjusted after each robot is planned to reflect

only the information that has yet to be covered by any robot. Thus, as

more and more robots are planned, the planner converges to full

coverage because the robots will eventually find almost every cell

with information. In the coupled planner, the coverage percentage

does not reach 100% because as the number of robots increases, it

becomes highly unlikely that every single robot in a given node will

pick a trajectory in a reasonably advantageous direction. Statistically,

the highest‐scoring individual nodes in the coupled planner, even

for many robots, will likely contain robots that do not contribute

significantly to the total information gain.

In Figure 18, the two planners exhibit the largest difference in

performance when trajectory time limits were small. For example,

when the maximum trajectory time was 250 s, the decoupled planner

reached 40% coverage, while the coupled planner remained at 10%

coverage. This can again be attributed to the fact that the decoupled

planner adjusts the information map after each robot is planned,

allowing subsequent robots to expand more reliably toward

previously unobtained information.

Further testing was conducted to assess how efficiently each

of the planners obtained coverage of the site of interest. To test

path time‐efficiency, each planner’s performance was measured as a

function of the maximum path time and number of robots, shown

in Figure 19.

Figure 19 shows that regardless of the maximum allowed

trajectory time, the coupled planner still eventually converges to

about 70% coverage given increasing numbers of robots. By contrast,

additional robots give the decoupled planner additional performance

F IGURE 17 Information map coverage and runtime plots comparing the coupled and decoupled planners. Each data point is averaged over
10 trials. (a) Information map coverage as a function of the number of robots. (b) Runtime as a function of the number of robots [Color figure

can be viewed at wileyonlinelibrary.com]

F IGURE 18 Plots of information map coverage as a function of maximum mission duration and number of node expansions for 3 robots.

Each data point is averaged over 10 trials. (a) Coupled planner and (b) decoupled planner [Color figure can be viewed at wileyonlinelibrary.com]
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at every value of maximum allowed time. This behavior is consistent

with the convergence results in Figure 17. However, for a maximum

path time of 700 s or greater and four or fewer robots, the coupled

planner attains 20% more coverage than the decoupled planner. This

shows that the coupled planner can be advantageous when mission

time is a secondary concern and the supply of AUVs to deploy

is limited.

For fieldwork purposes, the simulated performance behavior of

the two algorithms defines situations in which each might be most

useful for researchers with particular equipment limitations. Because

each robot collects as much information as is possible in the allotted

time, the decoupled approach tends toward full coverage of any

given map, no matter the size or information density. For the map

used to generate Figure 17a, the decoupled planner distributes the

information gathering workload efficiently up to seven robots, where

it reaches 85% coverage. Above seven robots, each individual robot

collects a decreasing amount of information. However, for a larger

and more complex map, the decoupled planner would continue to

distribute workload efficiently for as many robots would be

necessary to reach a similar threshold. Thus, the decoupled planner

would be more efficient than the coupled planner for large sites and

when the number of available AUVs is relatively large (particularly

more than four). However, the gains in coverage for small numbers of

robots and long trajectories seen in Figure 19 combined with its even

distribution of workload mean that the coupled planner could be

advantageous for researchers in certain fieldwork situations.

Specifically, the coupled planner archetype would be advantageous

whenever the target site is relatively small and dense, long

trajectories are permissible, and four or fewer robots are available.

6.4 | Fieldwork results

The coupled and decoupled planners were tested in the field through

AUV deployments off the coast of Malta to reconstruct the HMS

Maori shipwreck. Because only one Iver3 AUV was available for

fieldwork, the multirobot trajectories were executed sequentially

to best approximate the results of simultaneously deploying

multiple AUVs.

6.4.1 | Implementation details

For field deployments, the trajectories returned by the motion

planners were converted to Iver3 AUV mission files through a

series of steps, as illustrated in Figure 20. This process includes the

addition of surface waypoints to the trajectories, scaling of the

F IGURE 19 Plots of information map coverage as a function of maximum mission duration and number of robots. Each data point is

averaged over 10 trials. (a) Coupled planner and (b) decoupled planner [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 20 Flowchart demonstrating pipeline from path
generation to scaled, usable AUV trajectories for three robots in

VectorMap. Each final robot trajectory is projected over a sonar scan
of the HMS Maori shipwreck for reference [Color figure can be
viewed at wileyonlinelibrary.com]
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trajectories to fit the actual wreck size, and converting the

waypoints from Cartesian to GPS coordinates. After the planners

are executed, the edges of each trajectory are modified to include

a surface waypoint before and after each dive. For each edge in a

robot trajectory, the original edge length ddive is replaced with dtotal

by = +d d d2total dive surf.

Thus, the new edge length is the distance required to travel from

the surface of the water to the desired depth (above the highest

point of the target wreck), the distance traveled at that depth, and

the distance required to resurface. The surface waypoints allow the

robot to relocalize with GPS measurements between dives, as well as

maximize the amount of photogrammetry data collected at the

desired depth from the surface.

Once surface waypoints are added, the scaling of the trajectories

is adjusted such that each cell on the information map corresponds to

a ×1 1 m space on the physical shipwreck. To make this adjustment,

the conversion factor between cells and meters is calculated and

denoted by C .

To determine C , the length and width of the shipwreck in meters

is extracted from the sonar file using the SonarWiz software. Then,

the same measurements are taken on the corresponding information

map in the unit of map cells. The two values are used to determine

the meters per cell ratio, for example, C . Trajectory lengths and their

related variables are multiplied by C to either stretch or shrink the

entire trajectory and achieve the desired ×1 1 m cell scaling. After

being properly scaled, the GPS coordinates of the upper left corner of

the information map are used to output the trajectory’s waypoints

converted to GPS coordinates. The coordinates for the upper left

corner of the map are determined using the georeferenced sonar files

used to create the information map. Through these steps, simulated

plans are converted into missions containing GPS coordinates that

can be directly executed by the Iver3 AUV.

The depths of each dive can also be adjusted to improve the

quality of photogrammetry data collected. Initially, the trajectories

used a constant dive depth for every dive, regardless of the dive’s

location on the information map. However, the robot trajectories

should dive as close to the shipwreck as possible to capture ideal

photogrammetry data. Thus, a depth feature was added to the

planner, such that a depth map can be provided to the planner in

addition to the information map. This map is used to decide the

robot’s dive depth on each dive, based on the elevation of the wreck.

On each dive of the trajectory, the depth is set by ray casting

between a given node n and its parent nparent. The minimum depth

from the surface of any cell intersected by this ray casting process is

assigned to be the depth of the edge defined by n and nparent. This

process ensures that any given dive will not collide with the wreck

and that the planner can accurately account for collision checking at

the ends of dive segments.

6.4.2 | Fieldwork trials

For all missions, the AUV was equipped with a GoPro HERO4 to

collect video data of the HMS Maori shipwreck. The camera was

angled either directly downward, downward at a 45 degree angle to

the surface, or facing directly sideways to the left. Different camera

orientations were used based on the trajectory to capture optimal

overhead and side‐view footage of the Maori. An advantage of

TABLE 1 HMS Maori AUV deployments

Planner
# of robot
trajectories

Varied
depth?

Depth from
surface (m)

Camera
angle (deg)

Coupled 1 No 6 45

Coupled 2 No 6 45

Decoupled 1 No 4 90

Decoupled 3 No 5 45

Decoupled 3 No 5.5 45

Decoupled 1 Yes 5.5–6.5 90

Decoupled 2 Yes 5.5–6 90

Note: All trajectories were executed sequentially with a single AUV.

F IGURE 21 (a) Plot of pairwise distances between a set of three single AUV deployments (time‐synced) corresponding to an output of the
decoupled planner for three robots, for example, the fourth row of Table 1. (b) Zoomed in version of (a) to highlight the minimum distance
between AUVs. AUV, autonomous underwater vehicle [Color figure can be viewed at wileyonlinelibrary.com]
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conducting collision checking in a 2D horizontal plane is that no AUV

will ever be below another if deployed simultaneously and thus an

AUV will not appear in another AUV’s downward‐facing camera

footage. Table 1 summarizes the missions from which video data

was used to generate a photogrammetric reconstruction of the

shipwreck. For deployments with multiple robot trajectories planned,

such as in row 2 of Table 1 where 2 trajectories were planned, the

same AUV was deployed to sequentially follow each of the robot

trajectories. For each set of multirobot trajectories generated (e.g.,

each row), a single information map was first initialized with zero

information gain then updated as the planner constructed the

different trajectories. However, an alternative approach that could

be used in the future, for large areas of interest that require multiple

deployments, might be to only initialize the information map once for

a series of multirobot deployments. Figure 20 shows trajectories

planned by the decoupled planner for three robots, which was

executed by the AUV at 5m and then again at 5.5m from the surface

of the water. To generate missions with varied dive depths, a crude

depth map was created based on literature about the bay and

knowledge of the shipwreck’s structure.

Fieldwork results showed successful runs for the decoupled planner,

coupled planner, and decoupled planner with the depth map function-

ality. Both motion planners created trajectories which allowed the AUV

to obtain valuable footage of the shipwreck with a closeup, over‐top
view. Decoupled depth map trajectories also obtained closeup footage of

the shipwreck, helping to better capture the 3D geometry.

Although it was infeasible to execute simultaneous multi‐AUV
missions, it was possible to verify the efficacy of the multirobot

collision checking procedure. For each set of multirobot trajectories

output by the decoupled planner, the AUV was deployed sequentially

to follow each individual robot trajectory. In Figure 21, the robot

telemetry logs from one such set of missions visiting the HMS Maori

is used to illustrate that if three robots had executed these

trajectories simultaneously, no collisions would have occurred.

Specifically, the minimum distance between any two robots at a

given timestamp was greater than 2m.

Using the video data gathered from the field deployments, a 3D

reconstruction of the HMS Maori shipwreck was created using

Agisoft PhotoScan. PhotoScan was chosen as it is widely used by

marine archeologists and does not require camera calibration

(Yamafune, Torres, & Castro, 2017). Images of the resulting

reconstruction are shown in Figure 22. The reconstruction was

generated from 2,701 video frames, which were manually chosen

from approximately 11min of combined video footage from all

deployments. This was done to achieve the best reconstruction

quality, by a researcher experienced with photogrammetry. Investi-

gating the expected number of images required for adequate

reconstruction of a typical wreck is an avenue for future work.

7 | CONCLUSION

This paper presents coupled and decoupled multi‐AUV motion

planning methods for photogrammetric reconstruction, improving

upon existing methods for AUV information gathering. The planners

implement a number of novel contributions to the baseline RRT

algorithm. First, the objective function is formulated in terms of a

discretized information map with discrete viewpoints for each grid

cell. Considering all viewpoints in discrete space is favorable to

randomly sampling a continuous space because it ensures the

robustness of the planner to reliably visiting unique viewpoints

around the wreck. Second, the planners incorporate the dive pattern

of the AUV in both trajectory generation and collision checking,

which leads to an atypical expansion type over other RRT planning

problems. This means the time to dive, surface, and turn are directly

considered in the trajectory generation and collision checking

algorithms.

An analysis of performance trade‐offs between the two

planning approaches is also presented. The coupled planner is

able to achieve greater map coverage given fewer robots and

longer path times, demonstrating up to a 20% increase in coverage

over the decoupled planner. However, for large numbers of robots,

the decoupled planner is shown to be advantageous, since robot

trajectories are generated sequentially and can thus take into

account viewpoints that have yet to be visited. The decoupled

planner is also able to converge to 100% map coverage, while the

coupled planner stabilizes at 70% coverage. Finally, the decoupled

planner had a consistently lower runtime than the coupled

planner, due to fewer collision checks. These observations were

verified both in simulation and in fieldwork. To validate the

effectiveness of the planners, the Iver3 AUV was deployed over

the HMS Maori shipwreck in Malta to collect video data for

photogrammetric reconstruction of the wreck.

F IGURE 22 HMS Maori reconstruction images [Color figure can be viewed at wileyonlinelibrary.com]
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Future work for this project includes the simultaneous deploy-

ment of multiple AUVs to validate the effectiveness of collision

checking as well as further comparing the two MRMP approaches

discussed. Improvements to the coupled and decoupled planners can

be explored, as well as new methods that may involve combining

elements of both approaches. Future work could also include the

usage of a multibeam sonar technology to obtain an elevation map of

a given shipwreck; this could then be used to test the previously

mentioned depth map functionality.
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